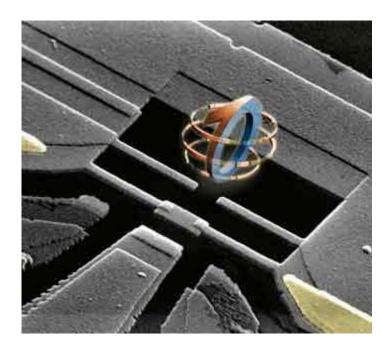
New Advances in QIS and Technologies, Samarkand, 10-18 September, 2019

Josephson junctions based on novel compounds for superconducting qubits



Iman N. Askerzade

Computer Enginering Dept. of Ankara University, Turkey and Institute of Physics Azerbaijan National Academy of Sciences, Azerbaijan

Layout of presentation

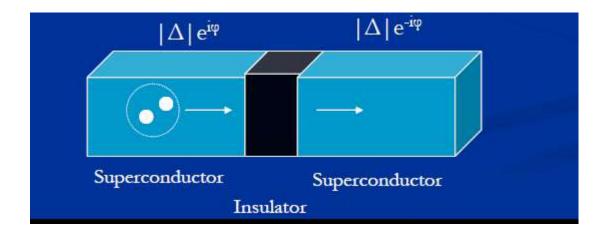
- Josephson effects : basic equations
- New superconducving materials and the influence on current-phase ralation of JJ
- Superconducting qubits
- Spectrum of Josephson qubits with anharmonic CPR
- Conclusions

This study suported by TUBITAK Project 118F093.

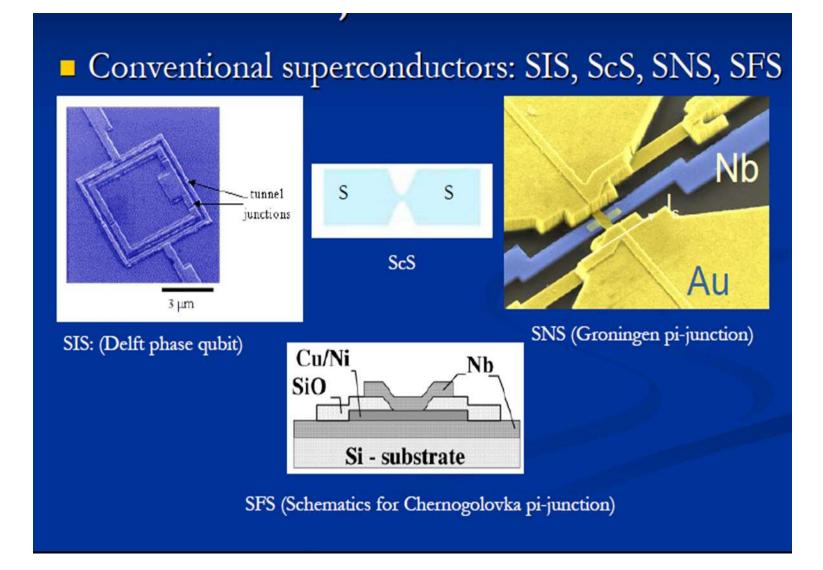
1. Josephson effect

B. Josephson (1962)

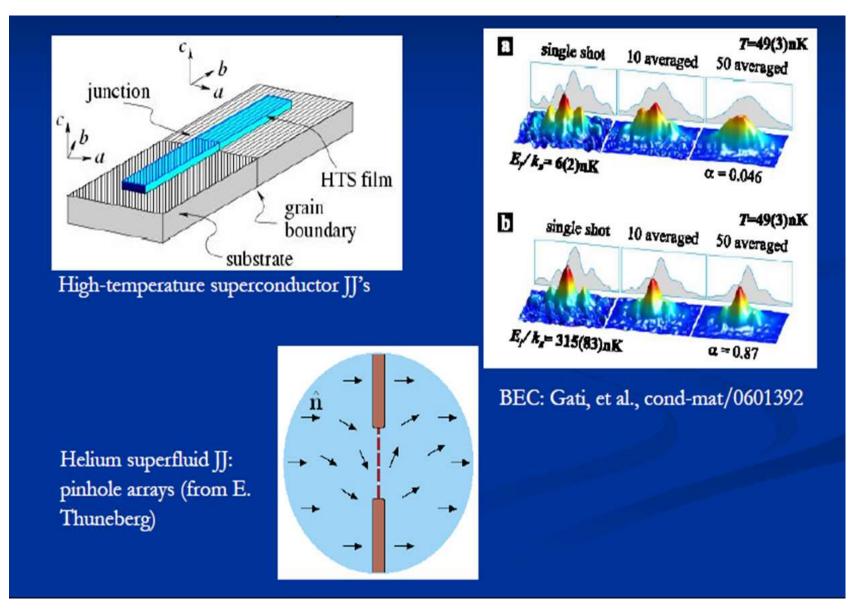
• Two superconductor or two condensates with macroscopic wave functions



Conventional Josephson junction types



Josephson effect in different systems



Gati Phys. Rev. Lett. 95, 010402,2005

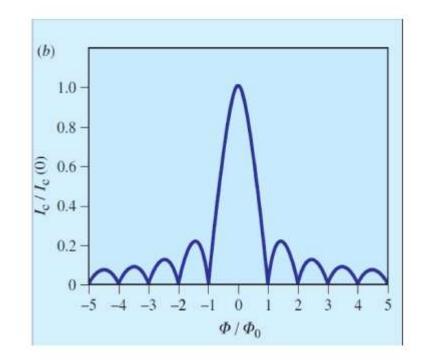
Method of tunnel Hamiltonian

$$\begin{split} H &= H_1 + H_2 + \hat{T}, \\ \hat{T} &= \sum_{\mathbf{pq}\sigma} (T_{\mathbf{pq}} a^+_{\mathbf{p}\sigma} a_{\mathbf{q}\sigma} + T^*_{\mathbf{pq}} a^+_{\mathbf{q}\sigma} a_{\mathbf{p}\sigma}) \end{split}$$

$$I = I_c \sin \phi; \ \phi = \phi_1 - \phi_2,$$
$$I_c = \frac{\pi \Delta}{2eR_N} \tanh \frac{\Delta}{2T},$$

Influence of external magnetic field on the critical current

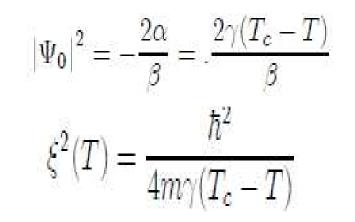
$$I_c(H) = I_c(0) \left| \frac{\sin(\frac{\pi\Phi}{\Phi_0})}{\frac{\pi\Phi}{\Phi_0}} \right|$$

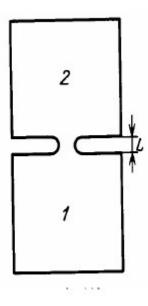


ScS junctions: Aslamazov-Larkin (1970)

Ginzburg-Landau (GL) equation

$$-\xi^2 \nabla^2 \psi - \psi + \psi^3 = 0$$





$$I = \frac{\alpha \hbar e}{\beta m} \operatorname{Im}(\psi^* \psi) = I_c \sin \phi; \ I_c = \frac{\alpha \hbar e}{\beta m}$$

Bogolyubov-De-Gennes equations

$$\begin{cases} \frac{\hat{p}^2}{2m} - \mu \\ \frac{\hat{p}^2}{2m} - \mu \end{cases} u(r) - \Delta(r)v(r) = \varepsilon u(r)$$
$$\begin{cases} \frac{\hat{p}^2}{2m} - \mu \\ \frac{\hat{p}^2}{2m} - \mu \end{cases} v(r) + \Delta^*(r)u(r) = -\varepsilon v(r)$$
$$E_J = \Delta \sqrt{1 - D\sin^2(\phi/2)}$$

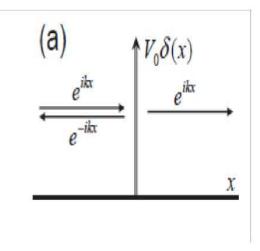
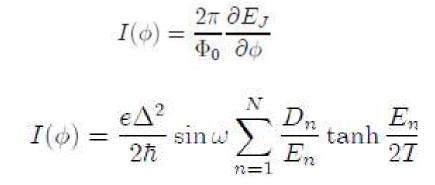
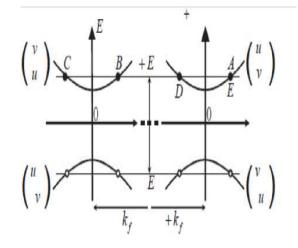
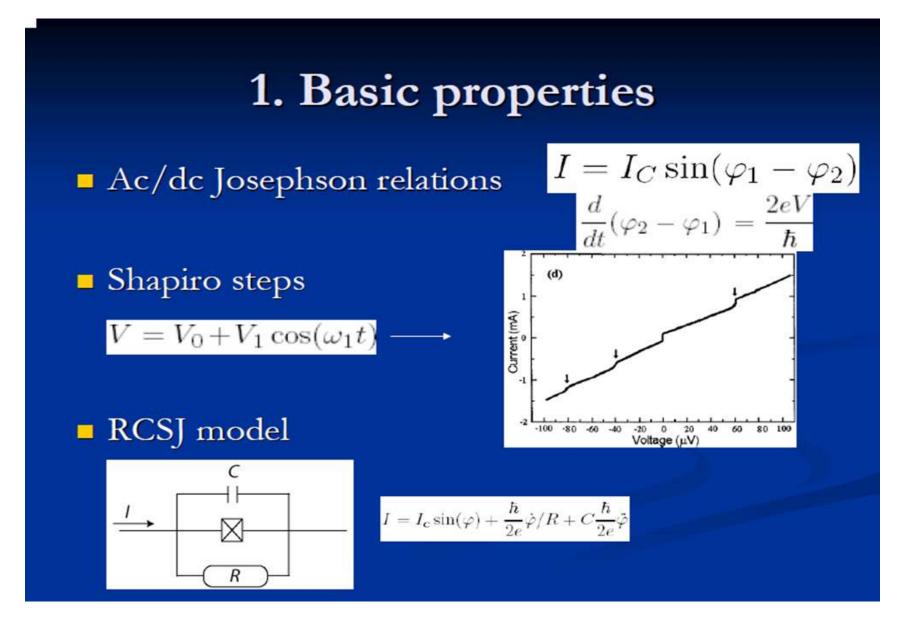


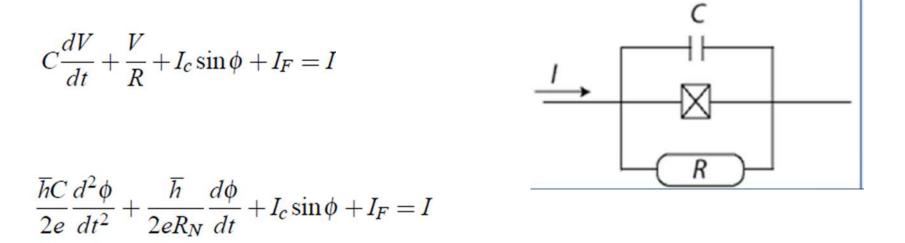
Figure 4:





Basic equation of JJ with conventional CPR

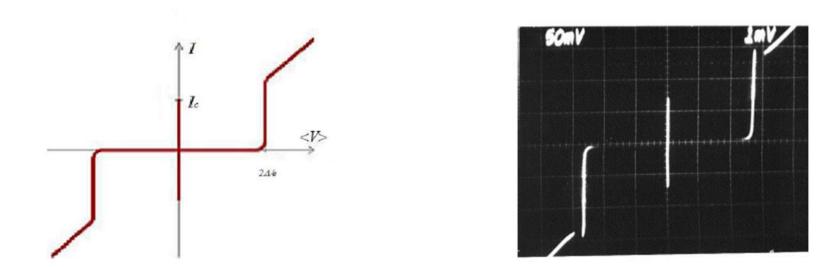




$$\beta_C \ddot{\phi} + \dot{\phi} + \sin \phi = i + i_F.$$

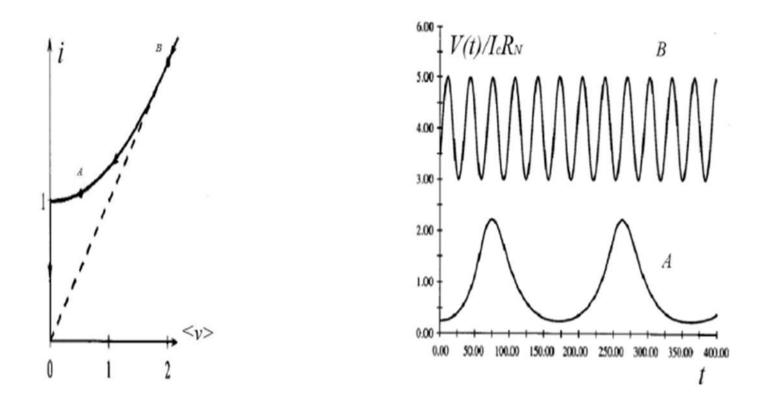
$$\beta_C = \frac{2\pi I_c R_N^2 C}{\Phi_0}$$

$$\frac{\Phi_0}{2\pi I_c R_N}$$



Latching technology on tunnel junctions: IBM Project 1980 years : ns

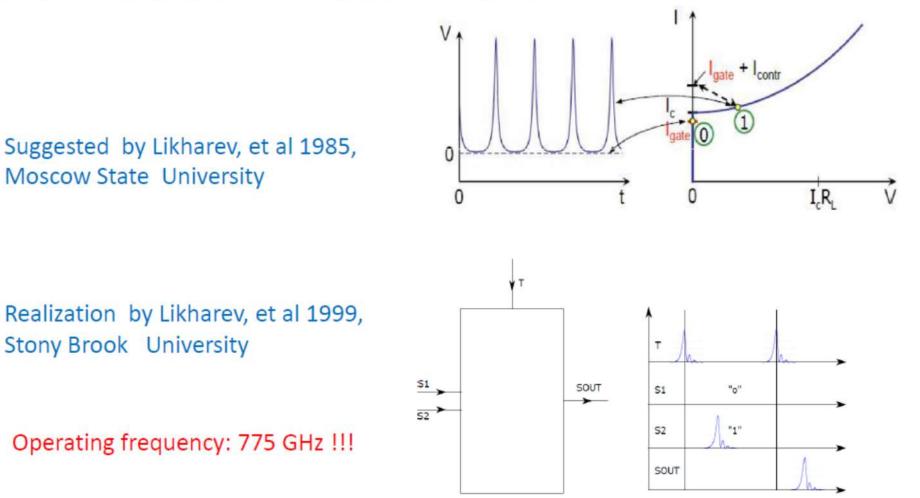
IV curve of overdamped JJ
$$\beta_c = \frac{2e}{\hbar} I_c R_N^2 C << 1$$



Time resolution at the level 1.2 ps

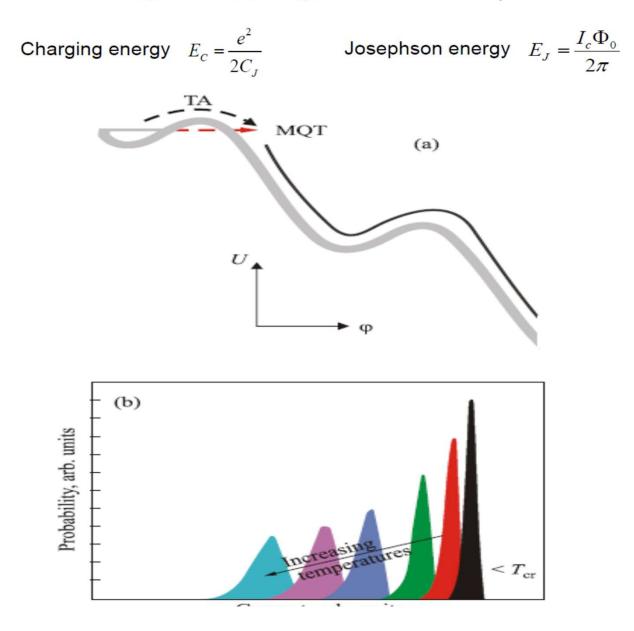
RSFQ Josephson logic

Josephson nonlatching technology on overdamped JJ

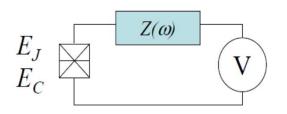


Thermal activation and MQT in JJ

Uncertainty relation for a superconductor: $\Delta n \cdot \Delta \phi \ge 1$



Quantum Fluctuations



$$Z << R_O = h/4e^2 = 6.45 \text{ k}\Omega$$

Josephson effect + quantum fluctuations of the phase Perturbation theory, $E_J/E_C << 1$

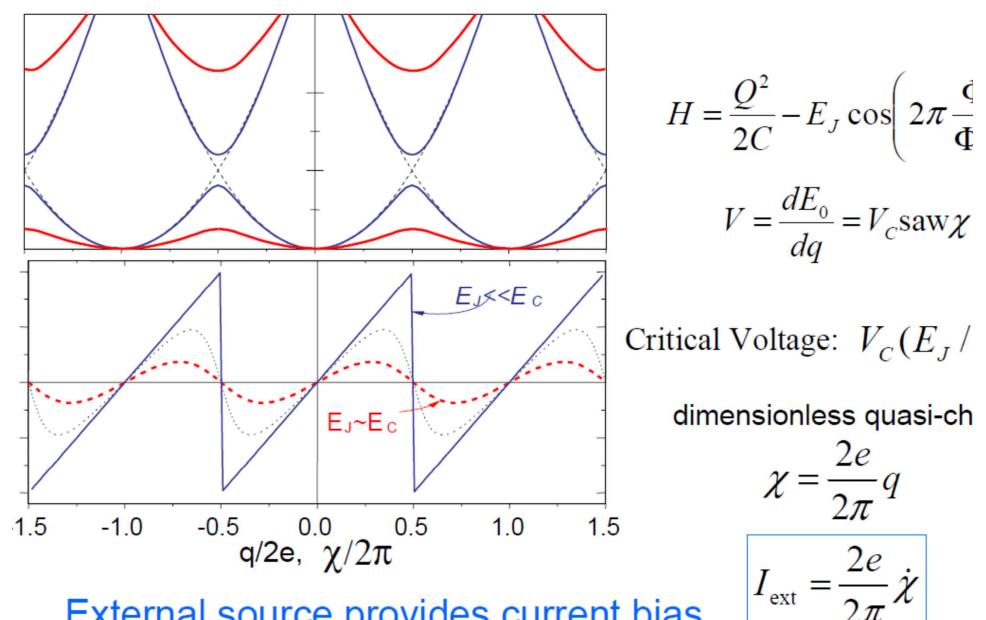
$$Z >> R_Q = h/4e^2 = 6.45 \text{ k}\Omega$$

Coulomb blockade + charge fluctuations (uncorrelated single C.P.tunneling events)

Perturbation theory $E_J/E_C << (R_O/Z)^{1/2}$

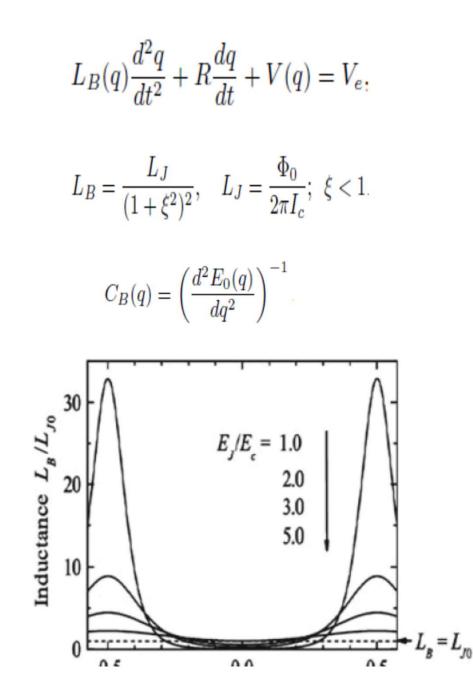
Luasi Charge description of Josephson Junctio

Averin, Likharev and Zorin 1985

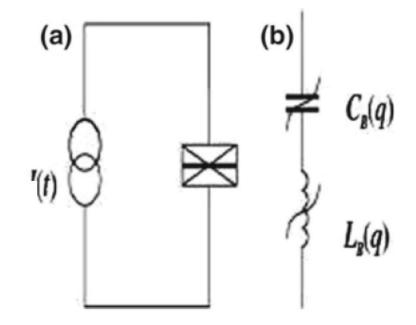


External source provides current bias

Basic equation of small JJ for quasicharge



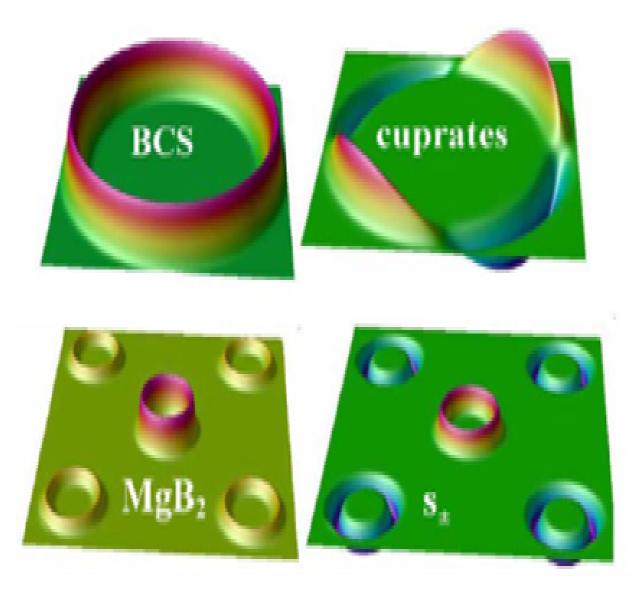
$$V(q) = \frac{e}{C} \frac{\frac{q}{e} - \left(\frac{q}{e}\right)^3}{\sqrt{\left(\left(\frac{q}{e}\right)^2 - 1\right)^2 + \frac{\kappa^2}{4}}}$$



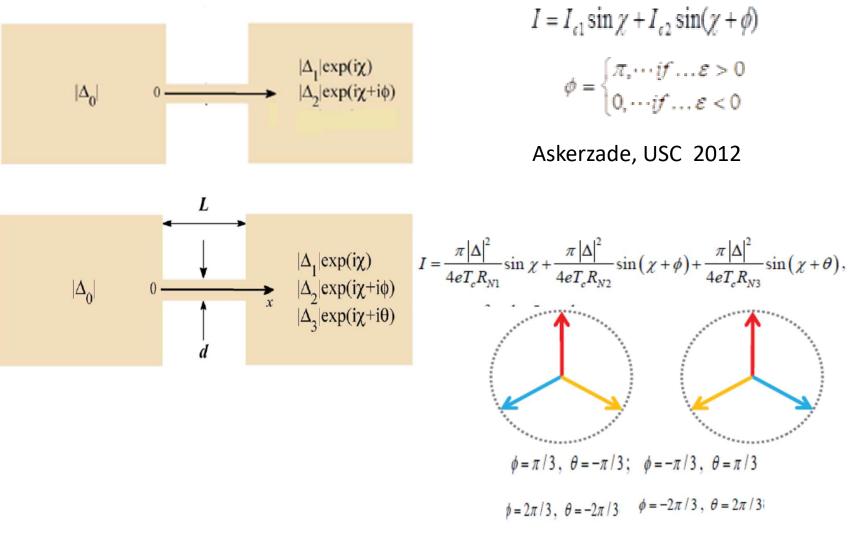
A. B. Zorin, Phys. Rev. Lett. 96 (2006) 167001.

Askerzade, MPLB, 2019

2. Order Parameter symmetry in different new compounds



Josephson current in SB/many band superconductors



Yerin, Omelyanchouk, LTP, 2014

D-wave HTSC: dwave-GL equations (Sigrist-Rice, 1993): SB/SB junctions

$$I(\phi) = \frac{4\pi ct}{\Phi_0} \chi_1(\mathbf{n}_1) \chi_1(\mathbf{n}_1) |\psi_1| |\psi_2| \sin \phi,$$

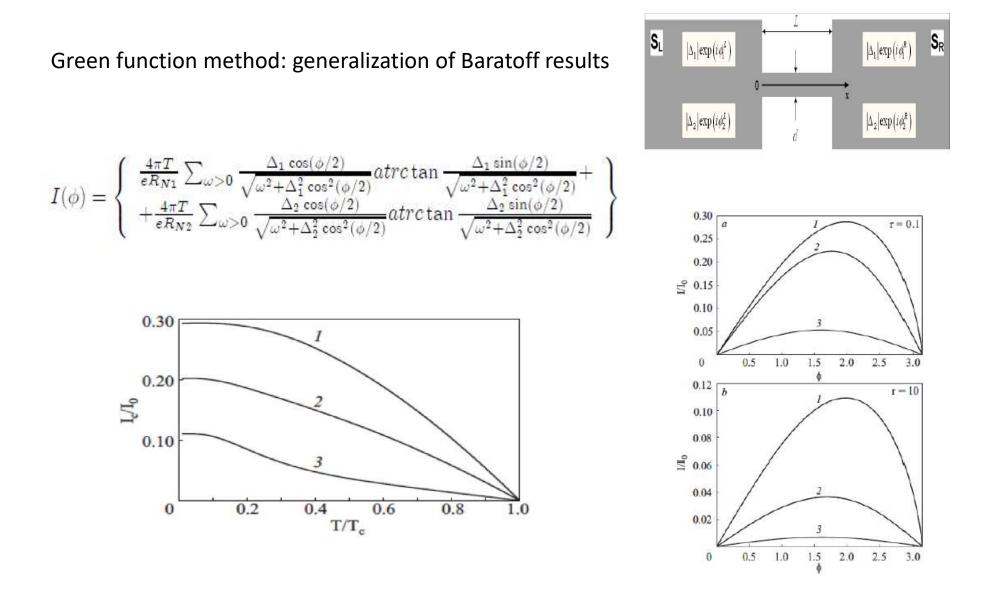
$$I(\phi) = A_s \cos(2\theta_L) \cos(2\theta_R) \sin \phi,$$

$$I(\phi) = A_s \cos 2(\theta_L + \theta_R) \sin \phi,$$

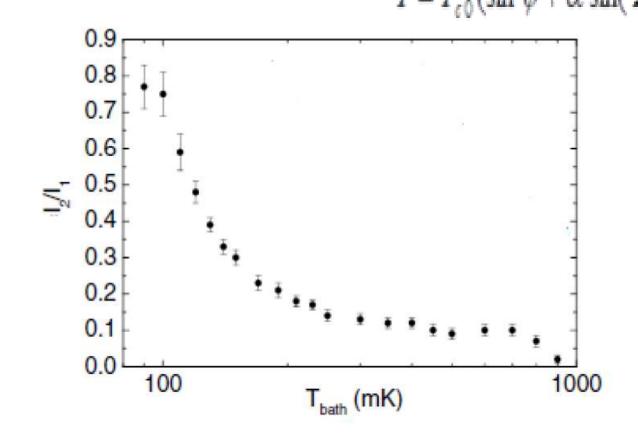
Tanaka-1997; Method of Green functions

$$\begin{split} \bar{R}_N^{-1} &= \int_{-\pi/2}^{\pi/2} \sigma_N \cos\theta d\theta; \quad \sigma_N = \frac{4Z_0^2}{(1 - Z_0^2) \sinh^2(\lambda d_i) + 4Z_0^2 \cosh(\lambda d_i)} \\ \lambda &= \sqrt{1 - \kappa^2 \cos^2 \theta} \lambda_0; \quad Z_0 = \frac{\kappa \cos \theta}{\sqrt{1 - \kappa^2 \cos^2 \theta}} \\ I(\phi) &= \sum_{n>1} (I_n \sin n\phi + J_n \cos n\phi) \end{split}$$

Two-band SC based JJ: Yerin-Omelyanchouk (2011)

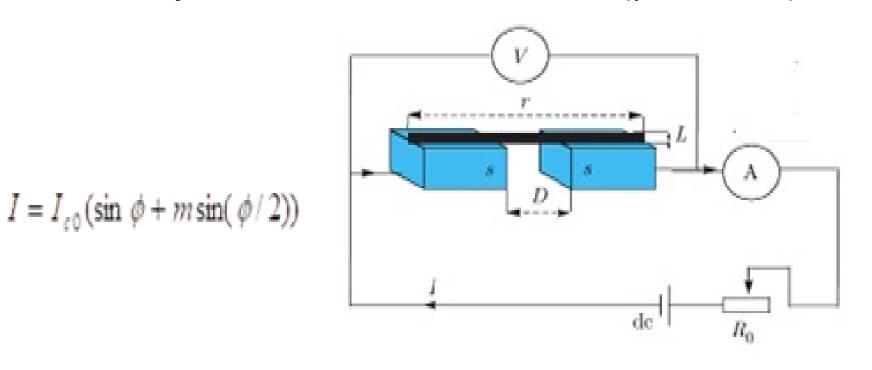


JJ Anharmonic CPR : YBCO grain boundary $I = I_{c0}(\sin \phi + \alpha \sin(2\phi))$

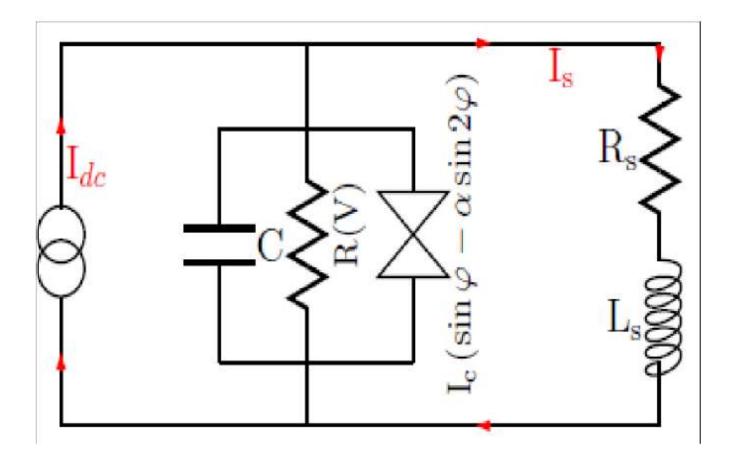


Bauch T. et al , Phys.Rev. Lett, 94,087003(2005)

Majorana fractional term in CPR (p-wave SC)

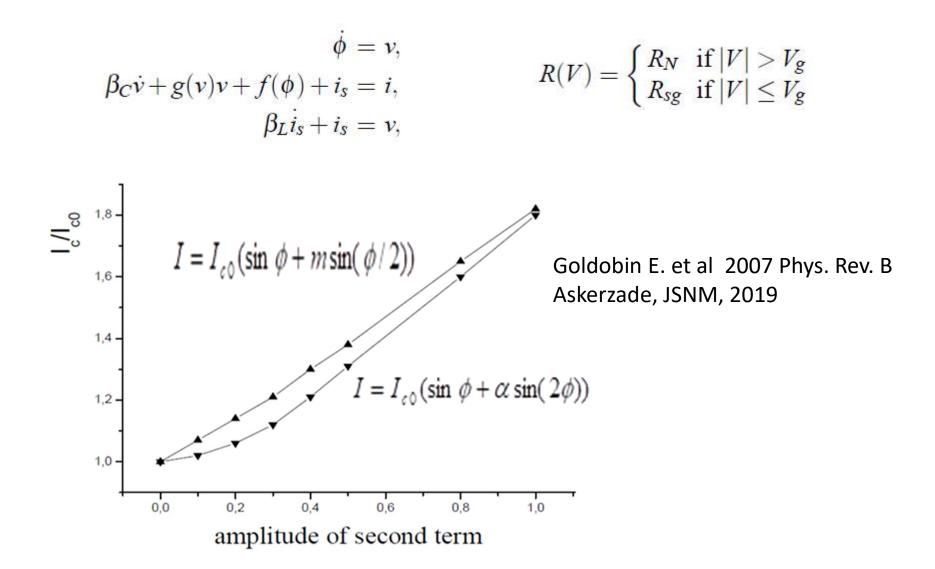


JJ with nontrivial barrier reveal CPR with fractional term



Canturk M., I.N.Askerzade I.N., IEEE Applied Superconductivity, 22,1400106 (2012)

JJ dynamics equation in general case



3. Superconducting qubits

Important steps to quantum computing

 Shor algorithm repulse Crush-Turing thesis: changing of computation power do not change complexity of problem

Atomic scale resolution nanotechnolgy

Low temperature experimental technique (nK)

Development low dimensional physics

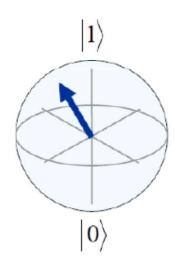
Qubits

Quantum states

Wavefunction

 $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

The Bloch sphere



 $\alpha^2 + \beta^2 = 1$

two basis states

 $|1\rangle$

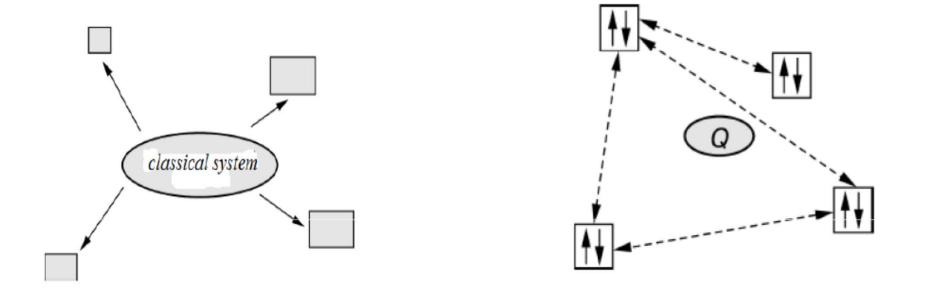
 $|0\rangle$

lpha and eta are complex numbers

 $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

In principle, any two-level system which acts quantum mechanically can be used as a qubit.

Classical and quantum systems



Changing of state of only one part (qubit) changes entire superposition, which lead 2ⁿ-fold quantum parallelism of computation

Entangled states

Entangled states for two qubit systems

 $|\Psi\rangle = \alpha 00\rangle + \beta 01\rangle + \gamma 10\rangle + \delta 11\rangle$

No Entangled states: $\alpha\delta - \beta\gamma = 0$

Factorization: $\Psi >= (a 0 > +b 1 >)(c 0 > +d 1 >)$

 $\alpha\delta - \beta\gamma \neq 0$

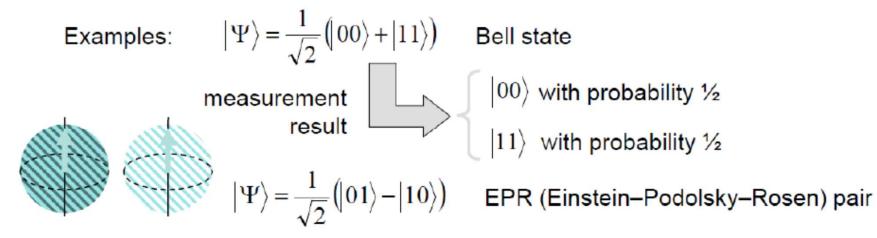
No factorization, entangled states

Entanglement of states

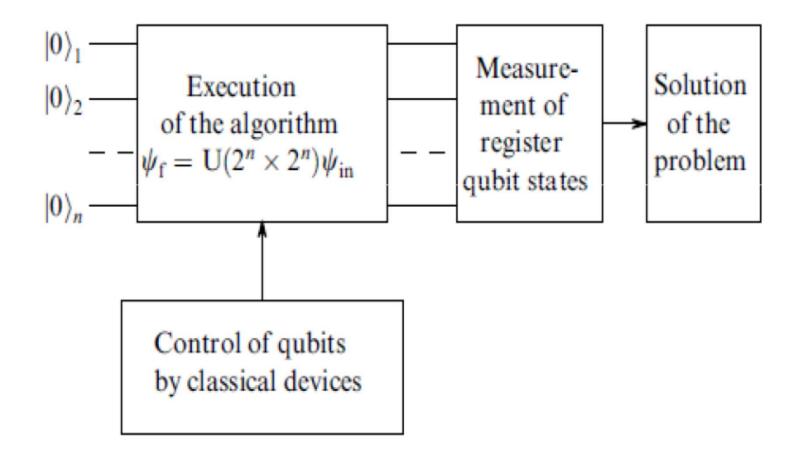
Some two-qubit states can be obtained as a product of single-qubit states, e.q.

$$|\Psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

Entangled state can NOT be obtained as a product of single-qubit states



Schematic of quantum computer

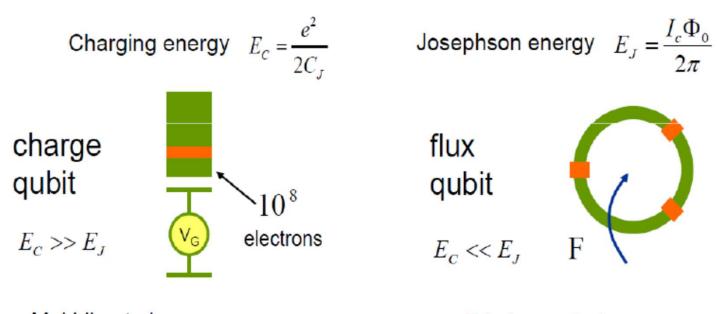


Possible qubits

- Microscopic
 - ensemble of spins (NMR)
 - ions in electromagnetic traps
 - neutral atoms
 - photons in cavities
 - single-atom defects (e.g. NV centers)

- Macroscopic or mesoscopic
 - spins in solid-state nanodevices
 - electrons on superfluid helium
 - charge, phase or flux in superconductors

Uncertainty relation for a superconductor: $\Delta n \cdot \Delta \phi \ge 1$

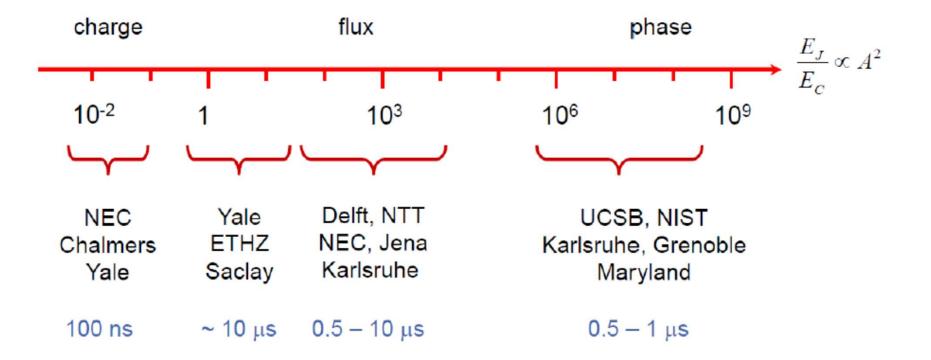


Makhlin et al.,
Nature 398, 305 (1999)
Nakamura et al.,
Nature 398, 786 (1999)

Friedman et al.,
Nature 406, 43 (2000)
van der Wahl et al.,
Science 290, 773 (2000)

Josephson qubits: energy scale

for a chosen J_c , the ratio E_J/E_C depends on the junction area A



Josephson phase qubit

Hamiltonian of phase qubit

$$H = -E_c \frac{\partial^2}{\partial \phi^2} + E_J \left\{ i_b \phi + \cos \phi \right\}$$

Quantum oscillator spectrum

$$E_{n0} = \overline{h}\Omega_p(n_0 + 1/2)$$

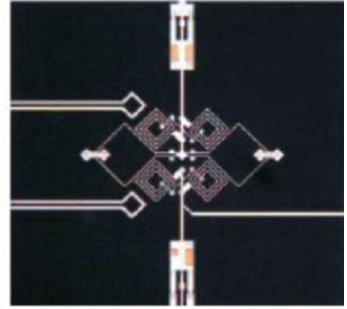
Plasman frequency

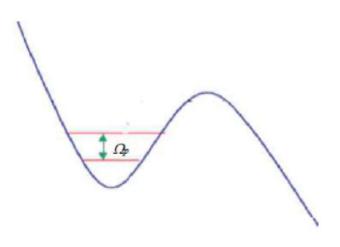
$$\Omega_p = \omega_J (1 - I_b/I_c)^{1/4}$$

$$\omega_J = I_c/2e$$
.

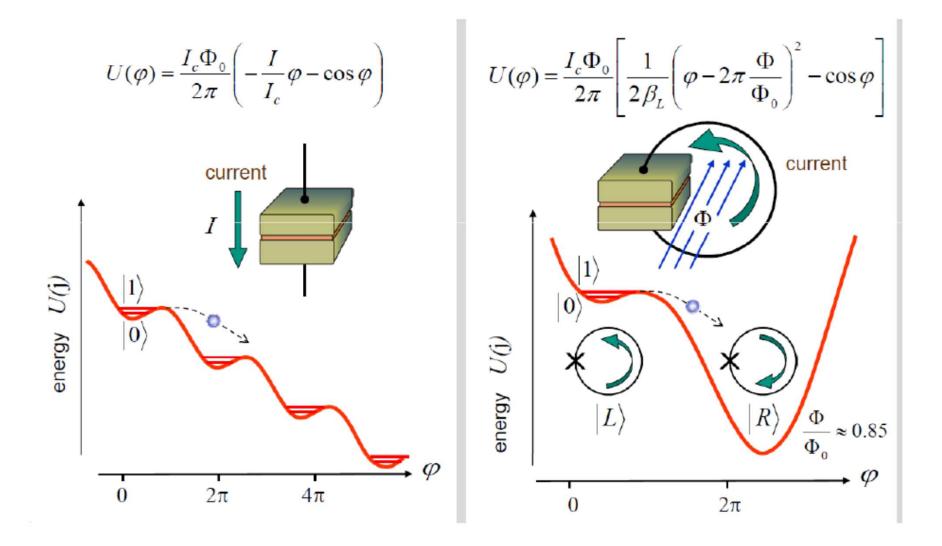
First realization of Josephson phase qubit:

J.M. Martinis, et al, Physical Review Letters **89**, 117901 (2002) Coherence time is short: < mks

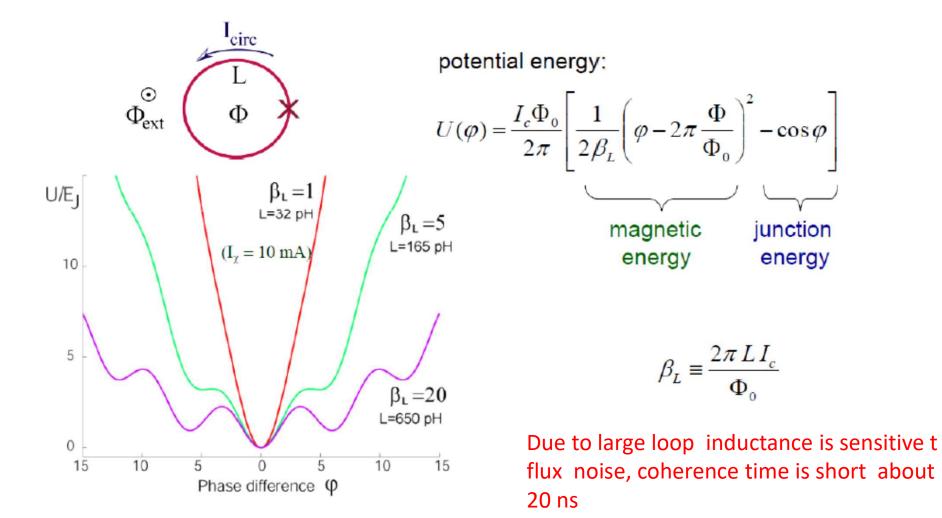




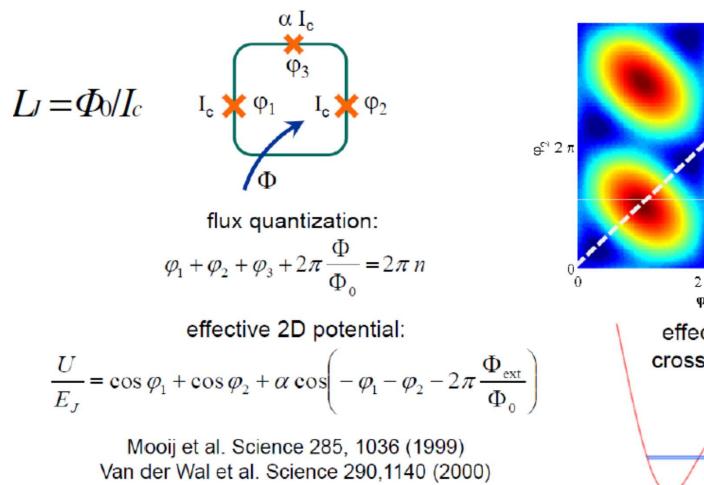
Josephson phase and flux qubits

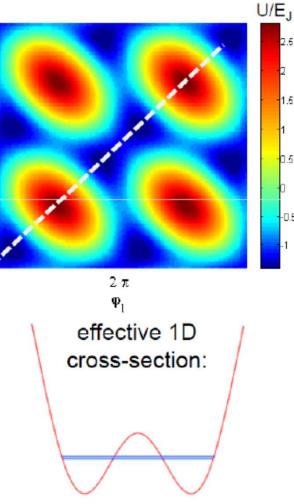


Single JJ flux qubit



Three JJ flux qubit



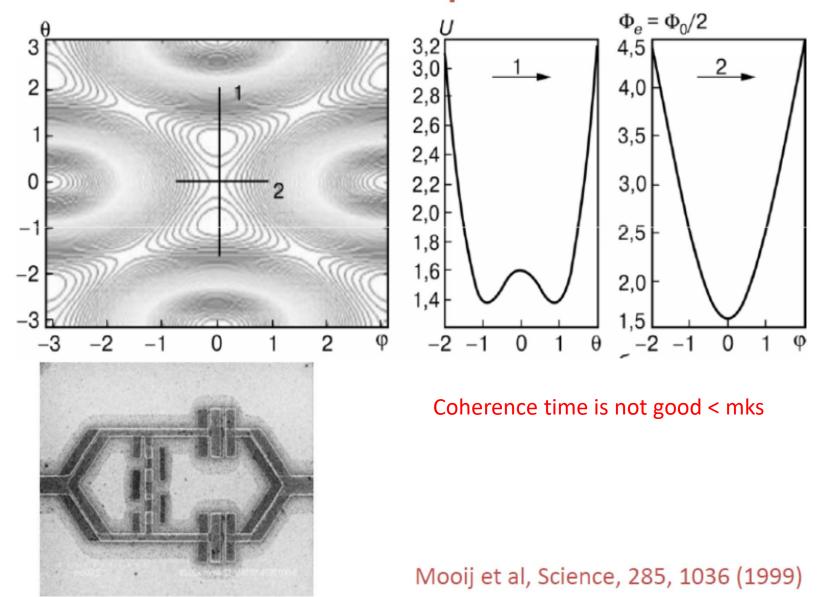


1.5

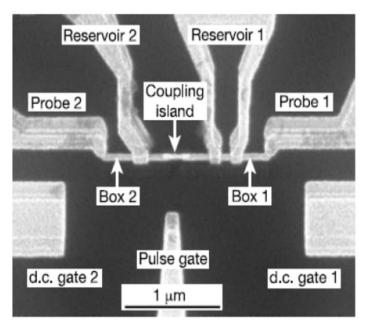
0.5

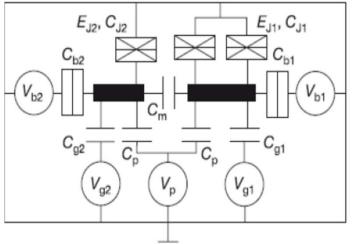
-D.5

Effective cross-section of potential in three JJ qubit



Two coupled charge qubits: 2003



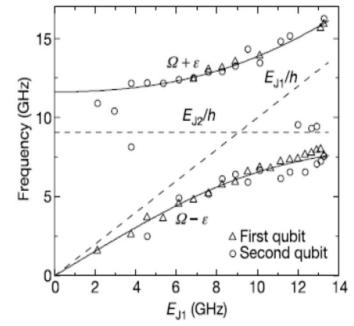


Quantum oscillations in two coupled charge qubits

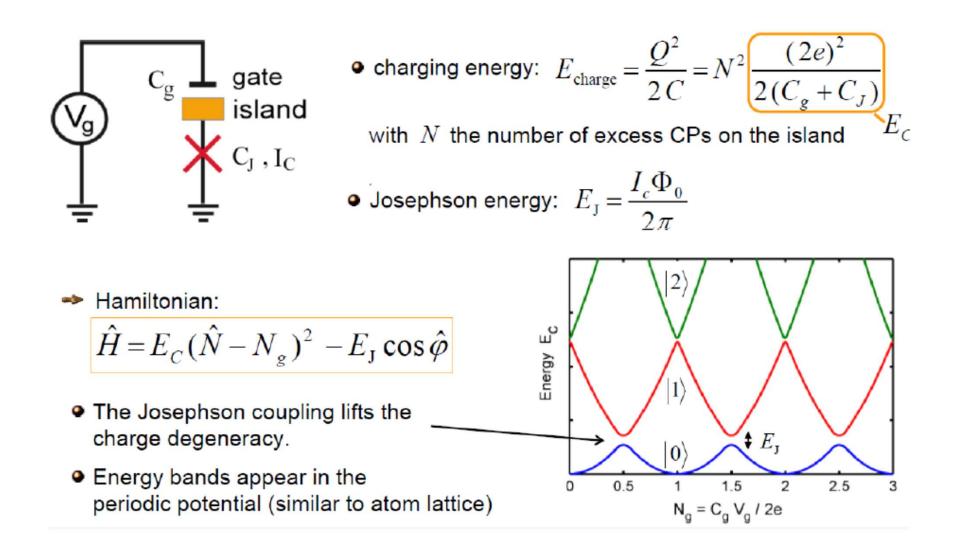
Yu. A. Pashkin*†, T. Yamamoto*‡, O. Astafiev*, Y. Nakamura*‡, D. V. Averin§ & J. S. Tsai*‡ NATURE | VOL 421 | 20 FEBRUARY 2003

* The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

‡ NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8501, Japan § Department of Physics and Astronomy, SUNY Stony Brook, New York 11794-3800, USA

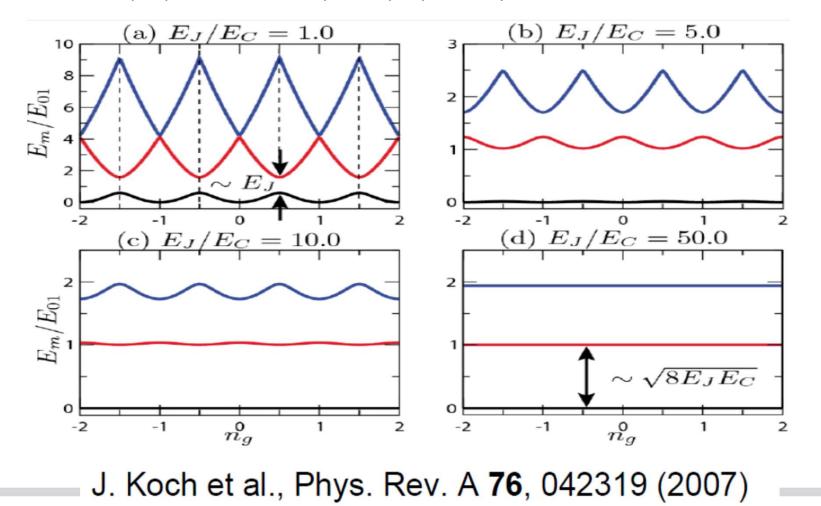


Charge qubit with JJ

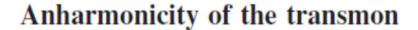


Transmon qubit

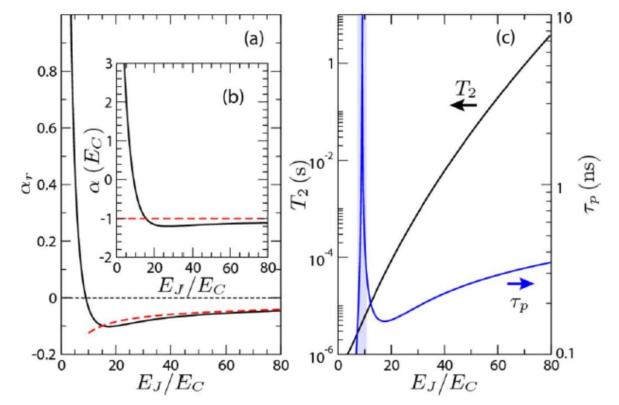
Charge qubits: sensitivity to charge fluctuations and low coherence time For this purpose transmon qubits proposed by J. Koch et al



Transmon qubit



$$\alpha \equiv E_{12} - E_{01}, \quad \alpha_r \equiv \alpha/E_{01}$$



J. Koch et al., Phys. Rev. A 76, 042319 (2007)

Key element of several qubit projects !!!!!

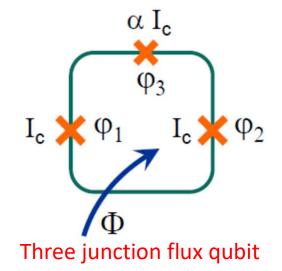
C-shunt flux qubit : Steffen et al, 2010PRL

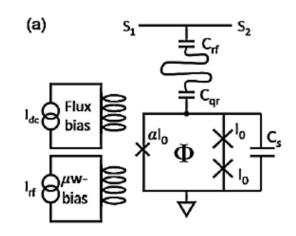
C-shunt flux qubit is the three junction flux qubit shunted by a large capacitance

Potential has a single-well form in contrast to three junction qubits

C-shun flux qubit :

- Coherence time: is about 1.5 mks
- Strong anharmonicity
- High reprocibility

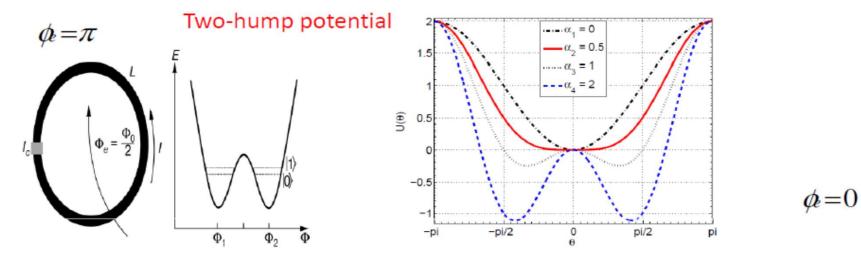




lpha=0.3. C-shunt flux qubit

4. Qubits on JJ with anharmonic CPR

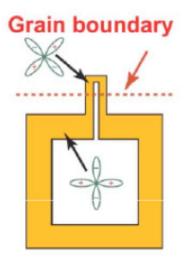
Silent flux qubit

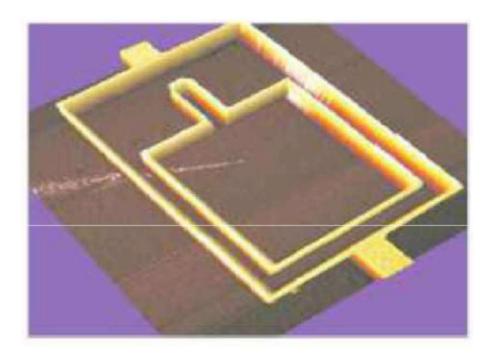


External flux fluctuations lead to decohering High protection againts external magnetic field

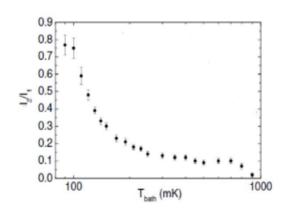
$$\begin{split} U(\phi,\phi_{+}) &= -\frac{\Phi_{0}I_{c1}}{2\pi} \left\{ \cos\left(\frac{\phi}{2} + \phi_{+}\right) - \frac{\alpha_{1}}{2}\cos\left(\phi + 2\phi_{+}\right) \right\} \\ &- \frac{\Phi_{0}I_{c2}}{2\pi} \left\{ \cos\left(\frac{\phi}{2} - \phi_{+}\right) - \frac{\alpha_{2}}{2}\cos\left(\phi - 2\phi_{+}\right) \right\}, \end{split}$$

Realization of silent qubit





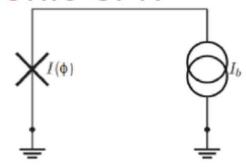
YBCO grain boundary JJ

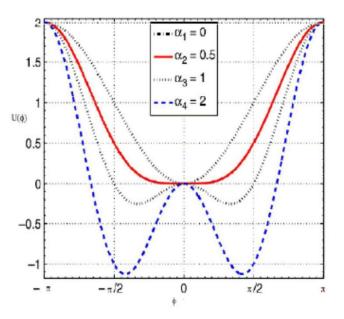


MHS Amin et al , PRB, 71(2005)

JJ phase qubit with anharmonic CPR

$$H = -E_c \frac{\partial^2}{\partial \phi^2} + E_j \left\{ i_b \phi + \cos \phi - \frac{\alpha}{2} \cos 2\phi \right\}$$

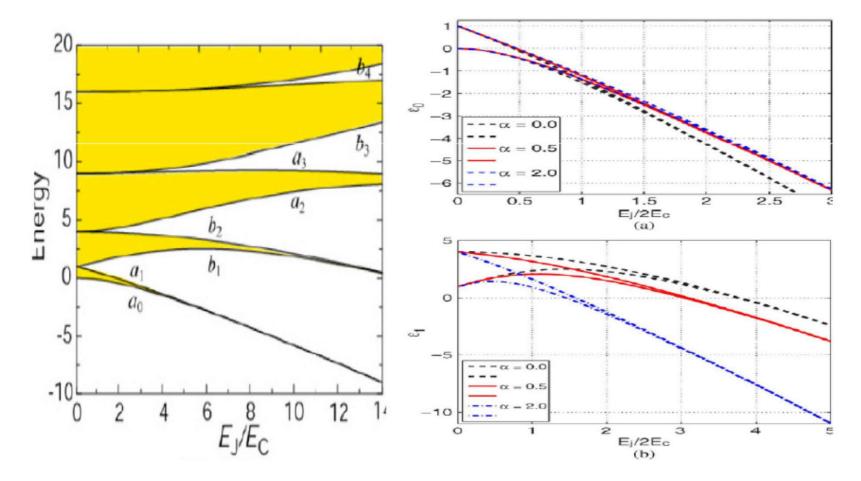




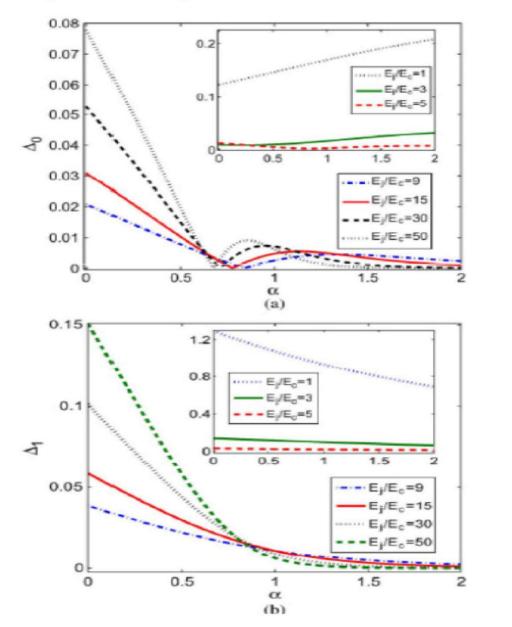
Canturk M., Askerzade I.N., IEEE Applied Superconductivity,23, 3541 (2011)

Spectrum of Josephson qubit with anharmonic CPR

Spectrum of Mathieu equation

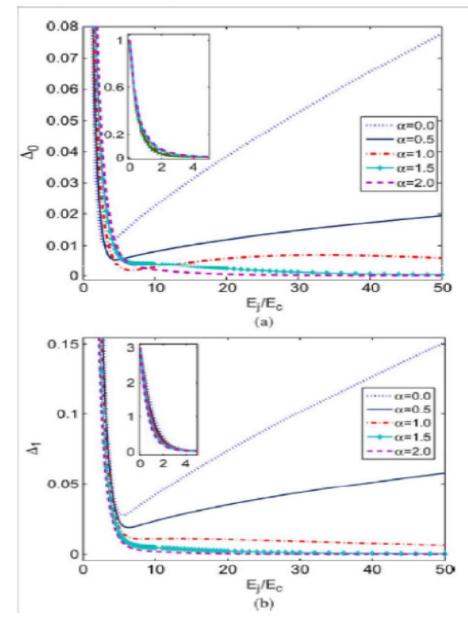


JJ phase qubit with anharmonic CPR



$$\begin{array}{ccccc} E_J/E_C & \alpha_{\max} & \Delta_{0\max} \\ 9 & 1.350 & 0.0045 \\ 15 & 1.125 & 0.0054 \\ 30 & 0.950 & 0.0072 \\ 50 & 0.875 & 0.0090 \end{array}$$

JJ phase qubit with anharmonic CPR

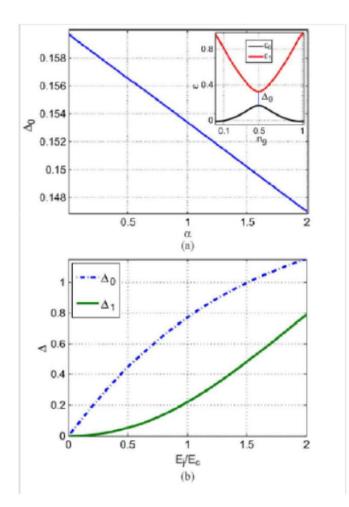


Charge qubits

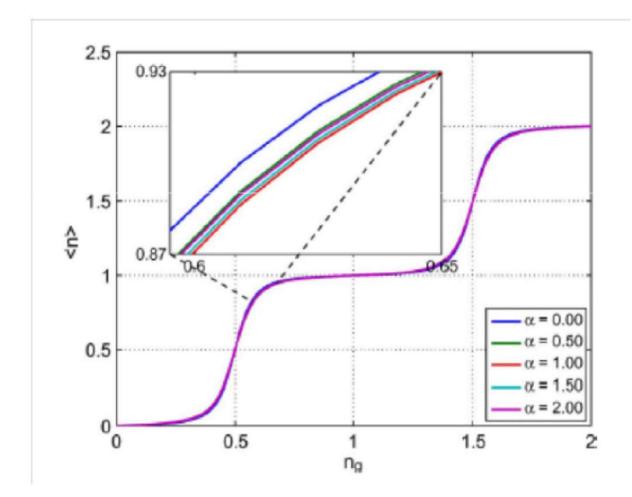
Canturk M., Kurt E., Askerzade I.N., Int. J. Comput. Math. Elect. Electron. Eng, 30, 775(2011)

$$\begin{split} H &= E_{\rm c} (\hat{n} - n_g)^2 - E_j \left\{ i_b \phi + \cos \phi - \frac{\alpha}{2} \cos 2\phi \right\} \\ i_s &= \langle \Psi | \, \hat{x}_s / I_c \, | \Psi \rangle = \frac{1}{b-a} \int_a^b \Psi^* \left\{ \sin \phi - \alpha \sin 2\phi \right\} \Psi d\phi. \\ \langle \hat{n} \rangle &= \langle \Psi | \, \hat{n} \, | \Psi \rangle = \frac{1}{b-a} \int_a^b \Im \left\{ \Psi^* \frac{\partial \Psi}{\partial \phi} \right\} d\phi. \\ \mathbf{A}_0 &= \begin{pmatrix} f_0 & e^* & 0 & 0 & 0 & \cdots & 0 & e \\ e & f_1 & e^* & 0 & 0 & \cdots & 0 & 0 \\ 0 & e & f_2 & e^* & 0 & \cdots & 0 & 0 \\ 0 & 0 & e & f_3 & e^* & \cdots & 0 & 0 \\ 0 & 0 & 0 & e & f_4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & f_{N-2} & e^* \\ e^* & 0 & 0 & 0 & 0 & \cdots & e & f_{N-1} \end{pmatrix} \\ \mathbf{A}_0 = \begin{pmatrix} f_0 & e^* & 0 & 0 & 0 & \cdots & 0 & e \\ 0 & e & f_2 & e^* & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & e & f_4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & e & f_{N-1} \end{pmatrix} \\ \mathbf{A}_0 = \begin{pmatrix} f_0 & e^* & 0 & 0 & 0 & \cdots & 0 & e \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & f_{N-2} & e^* \\ e^* & 0 & 0 & 0 & 0 & \cdots & e & f_{N-1} \end{pmatrix}$$

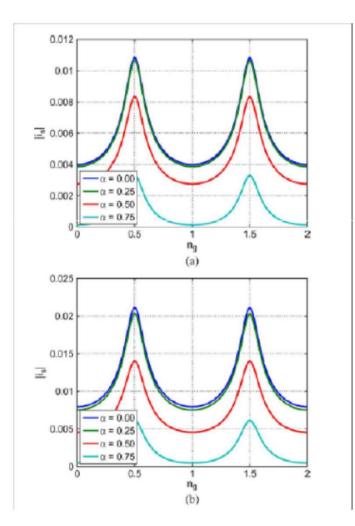
Charge qubit with anharmonic CPR JJ



Charge qubits



Charge qubits



Conlusions

- Basic equations of Josephson Dynamics presented
- Order parameter symmetry and multiband character of new superconducting materials on current-phase-relation of JJ is analyzed
- Different types of superconducting qubits and their characteriscs is discussed
- Influence of anharmonic CPR on qubit spectrum is considered